Autobiographical memory in schizophrenia: The role of metacognition

Roberto Mediavilla, Manuel López-Arroyo, Jorge Gómez-Arnau, Courtney Wiesepape, Paul H. Lysaker, Guillermo Lahera

ABSTRACT

Background: Autobiographical memory is an important component of declarative memory, which refers to the ability to recall personal events that happened in the past. This requires that the person senses or experiences himself/herself in the past (i.e., conscious recollection). For people with schizophrenia, conscious recollection can be particularly difficult, resulting in difficulty accessing detailed, specific autobiographical information. Our hypothesis is that the ability to monitor and think about one’s cognitive processes (metacognition) is a requisite for conscious recollection, and that it mediates the association between having schizophrenia and recalling fewer specific, personal memories.

Methods: Participants were 30 adults with schizophrenia and 30 matched healthy controls. The main assessment instruments were the Metacognition Assessment Scale-Abbreviated (MAS-A) and the Autobiographical Memory Test (AMT). Severity of symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Cognitive performance was measured with the Screen for Cognitive Impairment in Psychiatry (SCIP). Mediation analysis was conducted following Baron and Kenny’s procedure.

Results: People with schizophrenia had more semantic associations and fewer specific memories than controls in the AMT. Metacognitive ability (MAS-A total score) partially mediated the association between having schizophrenia and recalling fewer specific past events, even after controlling for cognitive impairment as a potential confounding source.

Conclusions: Metacognitive ability, which can be improved with available programs, intervenes in the process of accessing autobiographical memories in people with schizophrenia. Practical implications of this finding are discussed.

Schizophrenia is a mental disorder with a heterogeneous clinical presentation [1]. Alongside the positive (e.g., hallucinations, delusions) and the negative symptoms (e.g., blunted affect, social withdrawal, etc.), cognitive impairments are commonly present [2], which according to some constitutes the very essence of the disorder [3,4]. Diminished cognitive abilities have been described across different attention tasks [5,6], processing speed tasks [7] and memory tasks, specifically working [8,9], prospective [10], semantic [11] and episodic memory [12,13]. Semantic and episodic memory are both part of the declarative memory, but are not equally affected among people with psychosis: they struggle more with context-dependent, sensory-perceptual information (i.e., episodic memory) [14], than they do with more abstract mental representations (i.e., semantic knowledge). When the knowledge that is difficult to access is that which contains relevant information about one’s past experiences, a specific type of memory is affected, namely autobiographical memory.

Autobiographical memory (AM) contains different types of knowledge that refer to the person and persist over time [15]. Like declarative memories, autobiographical memories can either be conceptual and with higher levels of abstraction (semantic AM), or linked to sensory-perceptual stimuli, which entails a sense of mental “time travel” during retrieval (episodic AM) [16–19]. They complement each other because specific memories about one’s experiences need to be integrated into more complex autobiographical knowledge structures to last more
than just hours or days. Thus, when the person remembers, it is important that he or she sense himself or herself in the past, a phenomenon called recollective experience [18,20]. Re-experiencing oneself in the past improves the quality of AM in that it elicits more details and helps to place specific memories in a timeline [21]. It also serves a further purpose by helping “ground the self” by promoting the construction of self-knowledge (i.e., autonoetic consciousness) and self-narratives [15,22,23].

People with schizophrenia show AM impairments to a similar degree as deficits in other memory systems [24]. In a meta-analysis, Berna and colleagues narrowed this deficit in AM to three areas: retrieval of specific past events, richness of detail, and conscious recollection (i.e. the sense of being oneself in the past). They also reviewed the factors that could account for such deficit and reported that previous research focused on depression symptoms, history of childhood trauma, negative symptoms, and specific cognitive abilities, such as executive functions or general retrieval capacities. However, their conclusion was that the available empirical data did not consistently support any of these factors as underlying mechanisms of the AM deficit in schizophrenia. A cognitive process that might partially explain why people with schizophrenia have difficulty retrieving past events is metacognition. Metacognition refers to the awareness of affective, cognitive and embodied experiences and the ability to integrate them into a broader multifaceted self [25]. When someone is asked to recall context-related episodic information (e.g. who came to my 8th birthday party), the person needs to activate the so-called “retrieval mode,” which is similar to the sense of “time travel” mentioned above. This retrieval mode allows the person to access specific memories due to a multilevel cognitive process that relies on specific (meta)memory strategies (e.g., sorting birthday parties from childhood and selecting the specific 8-year-old party) [15,26] and also on broader metacognitive abilities, such as maintaining a centered sense of self (e.g., discarding memories of somebody else’s birthday parties) or carefully monitoring the retrieval process (e.g., noticing when fuzzy episodic memories are completed with semantic knowledge). Mounting evidence supports the deficit in specific metamemory strategies [27,28] and broad metacognitive abilities [29,30] in people with schizophrenia. In this study, we test the hypothesis that global metacognitive deficits in schizophrenia, characterized by impaired monitoring of cognitive processes or lack of self-reflection about one’s own, mediates the association between having schizophrenia and recalling less specific autobiographical memories.

1. Method

1.1. Study design and participants

Sixty participants were included in the study: 30 outpatients, diagnosed with schizophrenia according to DSM-5 [31], and 30 healthy controls matched with the former for age, sex, place of residence and educational level. The diagnosis of the patients was confirmed with the Structured Clinical Interview for DSM-5 (SCID-5). All the patients were stable, defined by the absence of hospital admissions or medication changes in the previous 3 months, and receiving pharmacological treatment with antipsychotics. Patients were excluded from the study if they had: 1) a diagnosis of psychosis due to medical illness or substance use, 2) a history of traumatic brain injury, 3) neurological disease, 4) severe visual impairment or 5) any medical condition that could affect their cognitive performance. Control subjects had no current psychiatric diagnosis according to DSM-5. Likewise, they were not taking psychiatric medication or undergoing outpatient treatment of any type. The dosage of the antipsychotic medication was converted by Leucht’s method of olanzapine equivalents [32].

1.2. Instruments

Metacognitive Assessment Interview (MAI) [33]. This is a semi-structured clinical interview designed to elicit and evaluate the metacognitive abilities of the participant in a brief narrative of a psychologically significant experience or event. The metacognitive functions assessed by the MAI are monitoring, integration, differentiation, and decentering. In the context of the interview, the patient is asked to describe the most disturbing experience of the previous 6 months. This time frame was selected to facilitate recall. Once the description of the episode is completed, the interviewer asks a series of questions to elicit and evaluate each metacognitive subfunction.

Metacognition Assessment Scale-Abbreviated (MAS-A) [34], Spanish version [35]. This instrument is an adaptation of the Metacognition Assessment Scale (MAS) [36], that quantifies the metacognitive skills implied from the interviewee’s verbal responses. It consists of four subscales: 1) ‘Understanding of One’s Mind / Self-Reflectivity’, which includes ten levels on the ability to think and form increasingly plausible, complex, and integrated ideas of oneself; 2) ‘Awareness of the Mind of the Other / Differentiation’, which consists of eight levels on the ability to think and form increasingly complex and plausible ideas about others; 3) ‘Decentration’, made up of four levels that measure one’s awareness of the lives of members of their larger community and their place within that community; and 4) ‘Mastery’, which includes ten levels on the ability to use metacognitive knowledge about oneself and others to address psychological and social problems. A final, aggregated score is also obtained. The higher the scores, the greater the ability to integrate and use intersubjective information effectively. Data obtained to date with the American version of the MAS-A suggest that internal consistency as well as test-retest and interrater reliability are acceptable, with intraclass correlation coefficients between 0.71 and 0.91 [34,37]. As for its construct validity, the MAS-A scores significantly correlate with other tests that measure awareness of illness, cognitive insight, social schema complexity, and preference for active coping strategies in people with psychosis [38].

Autobiographical Memory Test (AMT) [39], Spanish version [40]. This test assesses the specificity of autobiographical memory. Patients are provided with a 15-page booklet. On each page there is a written keyword and they are asked to write a specific memory that each keyword evokes. Previously, it is explained that a specific memory must refer to a particular event or situation that occurred at a specific time and place on a specific day. In addition, the evoked memory must be different for each keyword and must be at least one week old. At the beginning of the task, 12 keywords (5 with positive valence, 5 with negative valence and 2 neutral) are presented alternately. Both the instructions and the different keywords are read by the interviewer. If after 60 s of pronouncing the keyword the subject does not write a memory, the test goes on to the next word. The resulting memories are categorized according to their degree of specificity. Thus, memories of events lasting less than 24 h are coded as specific (AMT-Specific). If the event lasts more than 24 h, it is coded as extended (AMT-Extended). If the memory occurs repeatedly at different times, it is coded as categoric (AMT-Categoric). When there is no answer, or the reported event is repeated, it is coded as omission (AMT-Omissions). And finally, when the patient verbalizes an association that does not mention an event (usually names of people, animals or objects), that is classified as semantic association (AMT-Semantic).

Screen for Cognitive Impairment in Psychiatry (SCIP) [41], Spanish version [42]. The SCIP is a clinician-administered instrument that assesses cognitive functioning using five subscales: Working Memory Test, Verbal Learning Test-Immediate, Verbal Learning Test-Delayed, Verbal Fluency Test and Processing Speed Test. The test gives an operational result in four categories: normal performance, mild, moderate, or severe cognitive impairment.

Positive and Negative Syndrome Scale (PANSS) [43], Spanish version [44]. The PANSS is a test that evaluates the severity of the symptoms of schizophrenia through three subscales: Positive Symptoms, Negative Symptoms and General Psychopathology.
1.3. Procedure

Patients who met the inclusion criteria were briefly interviewed by telephone and asked to freely sign an informed consent, previously approved by the local Ethics Review Board. If they agreed, an in-person interview was scheduled. After signing the informed consent form, clinical and psychosocial data were collected. After this, the PANSS, SCIP, and AMT were administered consecutively. The tests applied to the healthy controls were the same, except for the PANSS, as it is a psychopathological evaluation scale. All the interviews were carried out by the same researcher, previously trained for the administration of the scales. The audio of all the interviews was recorded for later transcription and quantification with MAS-A.

1.4. Data analysis

First, variables were described in terms of frequencies or in terms of means, medians and standard deviations, depending on their distribution. To test if interval variables fit a Gaussian distribution, the Shapiro-Wilk test was conducted. Differences between groups were estimated following Baron and Kenny’s procedure [45] to test the hypothesis that metacognitive abilities mediated the association between having schizophrenia and recalling less specific memories in the AMT. This procedure consists of conducting a series of regression analyses to obtain different effect estimators (i.e., regression coefficients). First, we estimated the effect of having schizophrenia (our exposure) on the number of specific autobiographic memories recalled by the participant (our outcome), as measured by the AMT Specific subscale score, and represented by \(\beta \). Then, we estimated the effect of having schizophrenia on overall metacognition (our mediator), as measured by the MAS-A Total score, and represented by \(\beta^c \). Third, we estimated the effect of metacognitive abilities on autobiographical memory controlling for the effect of metacognition (\(\beta^c \)). Every estimator was also adjusted for the presence of cognitive impairment, as measured by the SCIP. The 95% confidence intervals for the average causal mediation effect (ACME) was calculated using a bootstrapping sampling procedure with 1000 simulations. A post-hoc, exploratory analysis was done following the same procedure, but including the scores of the MAS-A subscale Self-Reflectivity as a mediator, instead of the MAS-A total score.

2. Results

The characteristics of the participants are displayed in Table 1. The groups did not differ in terms of age, gender, or educational level, but people with schizophrenia were less likely to be employed or married and presented with a worse cognitive performance.

Regarding autobiographical memory, people with schizophrenia had fewer specific memories (\(W = 664, p = 0.001 \)) and more semantic

Table 1
Characteristics of the participants.

<table>
<thead>
<tr>
<th>Group</th>
<th>Schizophrenia (n = 30)</th>
<th>Control (n = 30)</th>
<th>All (n = 60)</th>
<th>Test</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, M (SD)</td>
<td>35.17 (8.67)</td>
<td>36.57 (6.51)</td>
<td>35.87 (7.63)</td>
<td>(t(58) = -0.707)</td>
<td>0.482</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>OR = 0.51^†</td>
<td>0.295</td>
</tr>
<tr>
<td>Women</td>
<td>10 (33)</td>
<td>15 (50)</td>
<td>25 (42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>20 (67)</td>
<td>15 (50)</td>
<td>35 (58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational level**</td>
<td></td>
<td></td>
<td></td>
<td>(\chi^2(3) = 0.58)</td>
<td>0.901</td>
</tr>
<tr>
<td>Primary (not completed)</td>
<td>3 (10)</td>
<td>2 (7)</td>
<td>5 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary (completed)</td>
<td>17 (57)</td>
<td>19(66)</td>
<td>36 (61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>8 (27)</td>
<td>6(21)</td>
<td>14 (24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University</td>
<td>2 (7)</td>
<td>2 (7)</td>
<td>4 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital status^b</td>
<td></td>
<td></td>
<td></td>
<td>(\chi^2(3) = 10.209)</td>
<td>0.017</td>
</tr>
<tr>
<td>Single</td>
<td>28 (97)</td>
<td>19(63)</td>
<td>47 (80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>1 (3)</td>
<td>7(23)</td>
<td>8 (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>0</td>
<td>3(10)</td>
<td>3 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>0</td>
<td>1(3)</td>
<td>1 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment^b</td>
<td></td>
<td></td>
<td></td>
<td>(\chi^2(3) = 13.157)</td>
<td>0.004</td>
</tr>
<tr>
<td>Studying</td>
<td>2 (7)</td>
<td>6 (20)</td>
<td>8 (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>3 (10)</td>
<td>10(33)</td>
<td>13 (22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>14 (48)</td>
<td>13(43)</td>
<td>27 (46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>10 (35)</td>
<td>1(3)</td>
<td>11 (19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive impairment (SCIP)</td>
<td></td>
<td></td>
<td></td>
<td>(\chi^2(3) = 11.425)</td>
<td>0.010</td>
</tr>
<tr>
<td>Absent</td>
<td>3 (10)</td>
<td>14 (47)</td>
<td>17 (28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>9 (30)</td>
<td>8 (27)</td>
<td>17 (28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>7 (23)</td>
<td>2 (7)</td>
<td>9 (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>11 (37)</td>
<td>6 (20)</td>
<td>17 (28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of schizophrenia in years, M</td>
<td>13.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olanzapine-equivalent neuroleptic dosage in mg, M (range)</td>
<td>10.8 (±4.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANSS, M (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive syndrome</td>
<td>16.90 (4.72)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative syndrome</td>
<td>17.13 (5.89)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General psychopathology</td>
<td>31.67 (7.84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self</td>
<td>5.10 (1.81)</td>
<td>6.93 (1.42)</td>
<td>6.02 (1.86)</td>
<td>(W = 709)</td>
<td><0.001</td>
</tr>
<tr>
<td>Others</td>
<td>3.92 (1.70)</td>
<td>5.15 (1.57)</td>
<td>4.53 (1.74)</td>
<td>(W = 639.5)</td>
<td>0.005</td>
</tr>
<tr>
<td>Decreration</td>
<td>1.38 (0.54)</td>
<td>1.73 (0.58)</td>
<td>1.56 (0.58)</td>
<td>(W = 609)</td>
<td>0.015</td>
</tr>
<tr>
<td>Mastery</td>
<td>4.80 (1.67)</td>
<td>6.37 (1.46)</td>
<td>5.58 (1.74)</td>
<td>(W = 692.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Total</td>
<td>15.20 (5.53)</td>
<td>20.18 (4.84)</td>
<td>17.69 (5.49)</td>
<td>(t(58) = 3.919)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Note. SCIP = Screening for Cognitive Impairment in Psychiatry, PANSS = Positive and Negative Syndrome Scale, MAS-A = Metacognitive Assessment Scale – Abbreviated.

† Fisher’s exact test.
‡ N = 59.
associations ($W = 279.5$, $p = 0.012$) than controls on the AMT. Additionally, controls had higher overall metacognitive abilities ($t = 3.919$, $df = 58$, $p < 0.001$) and performed better on every subscale of the MAS-A ($W > 609.00$, $p < 0.015$). These results can be seen in Fig. 1.

Fig. 2 shows that the effect of having schizophrenia on autobiographical memory ($c = −1.8$, 95% CI from $−3.3$ to $−0.3$) decreases when overall metacognition is included in the model as a mediator ($c' = −1.1$, 95% CI from $−2.6$ to 0.5, non-significant), showing that the association between having schizophrenia and recalling fewer specific autobiographical memories was mediated by metacognition (ACME $= −0.7$, 95% CI from $−1.3$ to $−0.1$). Similar results were obtained using Self-reflectivity (a MAS-A subscale), instead of MAS-A total score, as a mediator (ACME $= −0.6$, 95% CI: $−0.1$, 1.2). Because the dependent variable (number of specific memories on the AMT) was negatively skewed, analyses were conducted over the cube-rooted AMT-Specific score, with similar results. Association (Pearson correlation coefficients) between AMT and MAS-A domains are presented in Supplementary Table 1.

3. Discussion

Our results demonstrated that people with schizophrenia recall fewer specific autobiographical memories (AMs) and make more semantic associations than controls without schizophrenia. These results are consistent with previous reviews and meta-analyses [23,24], and support the hypothesis that people with psychosis tend to remember general, abstract information, instead of specific personal experiences. Our results also showed that the association between having schizophrenia and recalling fewer specific past events during a memory task is partially explained (i.e., mediated) by metacognitive deficits, as measured by a multilevel metacognitive task, even after controlling for a potential confounding source, namely neurocognitive impairment. This is in line with previous evidence suggesting that metacognitive abilities may be linked to AM, as the cortical areas responsible for both processes often overlap [46]. However, to the best of our knowledge, ours is the first study that explores such association empirically. Mediation analysis is a statistical method used to quantify the causal sequence by which an antecedent variable causes a mediating variable that causes a dependent variable. In this case, our study shows that the association of having schizophrenia and AM impairment is mediated by a deficient metacognition.

These findings could add some knowledge to the exploration of the cognitive mechanisms accounting for AM impairment in schizophrenia. In order to understand the role of metacognition as a mediator variable, it is important to conceptualize the two stages that AM entails, namely the generation of the specific autobiographical memory in the past (encoding) and the access to that memory in the present (retrieval). The accessibility and availability of a certain specific memory is influenced by how, where and when it was codified. However, the retrieval stage has received more attention, perhaps because it can be modified in the present time. Recently, Berna and colleagues offered preliminary evidence that people with psychosis are overconfident about their performance during an AM task [47], a metacognitive deficit usually detected in schizophrenia with non-autobiographical memory tasks [27,28]. Specifically, Berna and colleagues asked their participants to judge whether a certain event was part of a series of autobiographical memories that they had reported previously to the examiner (that is, a hit) or if it was not (false alarm). The authors had previously found that people
Fig. 2. Regression coefficients (beta) and 95% confidence intervals (in square brackets), where \(a\) refers to the effect of having schizophrenia over metacognition (MAS-A), \(b\) is the effect of MAS-A on specific autobiographical memories recall (AMT-Specific), \(c\) is the effect of having schizophrenia over AMT-Specific, and \(e\) is the effect of having schizophrenia controlling for MAS-A scores. All estimators are adjusted for neurocognitive impairment. (*) \(p < 0.05\), ** \(p < 0.01\).

with schizophrenia displayed a signal detection similar to that of people without schizophrenia [48]. Yet, what they found later was that, when people with schizophrenia misidentified a false alarm as a hit, they were more confident than controls on their judgments [47].

The study design of Berna and colleagues was different from ours. In fact, their between-groups analyses revealed similar results on AM, likely because they used a recognition task and we used a recall task. However, one can imagine how metacognition can impact the retrieving process during a recall task. If the person has trouble trying to recall a certain specific event that happened to him or her in the past, he or she might think that the memory (or perhaps the event) is simply not there. At that point, being overconfident on that memory not being available might think that the memory (or perhaps the event) is simply not there.

The practical implications of these results are worth outlining. First, non-probabilistic sampling methods were used, so it is not possible to generalize the results. However, sociodemographic and clinical characteristics are provided to facilitate the comparison of the results with other studies. Second, metacognition abilities were assessed by a self-reported instrument, so the possibility of biased responses cannot be rejected. Third, neither the Spanish version of the AMT nor the Spanish version of the MAS-A have been tested through well-designed psychometric studies. Last, the sample was rather small, so more complex mediation analyses could not be performed. Metacognition overlaps with neurocognitive functions such as memory, attention, and executive function, and a metaanalysis reported a small to moderate mean effect size between neurocognition and metacognition [63]. However, in this study, general cognitive abilities, a possible confounder factor in the model, were statistically controlled for.

In conclusion, this study provides evidence that metacognition plays an important role in the process of retrieving autobiographical memories. This has theoretical implications in terms of understanding the mechanisms of conscious recollection and self-construction and practical implications regarding the use of the available metacognitive interventions for reducing AM deficits. Further research is needed in both directions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.comppsych.2021.152254.

References

jamapsychiatry.2013.15.
[5] Luck SJ, Hahn B, Leonard CJ, Gold JM. The so-called minimal self or ipseity [58,59]. This is linked to more specific impairments, such as the belief that certain experiences, either tangible or mental, are not one’s own (sense of ownership) [60,61]. As Klein and colleagues proposed, when the process of recollecting past personal experiences is affected, the disintegration of self might occur [62]. In sum, increasing metacognition in schizophrenia could help with monitoring the retrieval of autobiographical memories, facilitating the access to more detailed, context-related information, and therefore providing more events in which selfhood can be grounded.

This study has certain limitations. First, the available mediations methods were used, so it is not possible to generalize the results. However, sociodemographic and clinical characteristics are provided to facilitate the comparison of the results with other studies. Second, metacognition abilities were assessed by a self-reported instrument, so the possibility of biased responses cannot be rejected. Third, neither the Spanish version of the AMT nor the Spanish version of the MAS-A have been tested through well-designed psychometric studies. Last, the sample was rather small, so more complex mediation analyses could not be performed. Metacognition overlaps with neurocognitive functions such as memory, attention, and executive function, and a metaanalysis reported a small to moderate mean effect size between neurocognition and metacognition [63]. However, in this study, general cognitive abilities, a possible confounder factor in the model, were statistically controlled for.

In conclusion, this study provides evidence that metacognition plays an important role in the process of retrieving autobiographical memories. This has theoretical implications in terms of understanding the mechanisms of conscious recollection and self-construction and practical implications regarding the use of the available metacognitive interventions for reducing AM deficits. Further research is needed in both directions.

Thomsen DK. There is more to life stories than memories. Memory 2009;17:445–57. https://doi.org/10.1080/09658210902746789.

